Receive Buienradar BR-1800 weather station on RFM69 and Lora modules

My local sailing club has a Buienradar BR-1800 weather station with its indoor unit in the start/finish venue. There it is inaccessible to the sailors. I have some past experience in weather stations. I was the first to receive FSK signals from a WH1080 weather station. Before that time OOK was the modulation of choice. As sailor I actually want to be able to read the local wind and direction, preferable also from home. So I set out to make this weather station internet connected.

I started googling on to my surprise I found only questions of people who wanted to connect this to for example Domoticz but no easy solutions that I could reuse. Later I learned that there is an implementation which is copied by one or two others. That was after the fact!. Googling on reverse engineering or rf protocol for the BR-1800 I found two useful pieces of information. The first indicated that the BR-1800 is a Fine Offset WH-2300 and it had two spreadsheets with the RF protocol (RF properties and packet format). Searching of WH-2300 did not result in more knowledge. The second interesting information was a picture of the internal PCB that showed a footprint of the radio module used. I quickly recognized that as a HopeRF RFM22.  

 

The FSK signals are compatible across a range of HopeRF radio’s. Together with the protocol spreadsheet there was enough information to get me started. I pulled a STM32-based Jeenode Zero with RFM69 radio form the box and set up a PlatformIO environment using the jeelabs/Jeeh library as a lib_deps. With reusing some code and register settings form my earlier WH1080 work I was able to quickly make a receiver implementation.

So I went to the sailing club (sailed a bit first), opened my laptop and after a few minutes I had received the raw data of several packets. Back home! After studying a bit and comparing to the expected protocol I noticed that the payload was too short and I actually recognized it. I hooked up the WH1080 packet decoder and indeed, WH1080 / WS400 signals. There is another station at the club, maybe on a boat. But I should have received Buienradar BR-1800 signals as well. Same frequency and bitrate.

The next day I went back to the club and decided to inspect the indoor unit. It had no reception of the outdoor unit. So I took a long ladder and removed the outdoor unit and brought it home. checking the batteries learned that the rechargeable NiM-hydrides were completely flat. So much for a solar recharging system. After fixing this and hooking up the Jeenode Zero again I started receiving the signals. After tweaking a bit with preamble and syncword detection settings I was receiving over 80% of the transmitted packages. Next step: Decoding.

As the format is clearly related to the WH-1080 and using the rf protocol spreadsheet it was not too difficult to write the decoding algorithm. The CRC turned out to be the same as for the WH-1080. By now I had realized that this outdoor unit “architecture” is actually better known as WH24. There are some FCC records for clearance in the USA. Searching on WH24 I finally found  source code in Benjamin Larsson repository. In this file details of the protocol and decoding can be found. I used this to “compare notes” and copied code to derive the UV-index. In the end it turns out that the BR-1800 uses a different UV-index scale. 

After hooking up the Jeenode Zero with RFM69 I started to receive some packets. With some tuning of preamble and syncword detection I receive over 80% of the transmissions. At this point in time I have a working implementation. 

RF69 #17: 24 3c ce 62 19 63 0f 03 00 02 00 00 00 00 00 a9 c9
r 116 l 2 a-1525

checksum  ok crc  ok
ID: 3C, T=13.7°C, relH=99%, Wvel=2.1m/s, Wmax=3.4m/s, Wdir=206°, Rain=0.6mm, UV=0, UVindex=0, Light=0.0, battery ok

The final goal is to connect the Buienradar BR-1800 with wifi to the internet. ESP32 is a very useful solutions. They are available with HopeRF (RFM95/RFM96) and SemTech (SX1276/SX1278) Lora modules. So would a Lora module be able to receive the FSK modulated signals. The answer is yes which I will explain in a next post.

Source code will become available on github/sevenw after finishing the project and some cleanup.

 

Unidentified 868MHz OOK signals

In my attempts to receive weather stations on the 868MHz band, without exact knowledge on for example transmission frequencies, I have performed sweeps of frequency range 867.850 – 869.000 MHz in steps of 20kHz. In the loggings I have been looking for periodic signal. Using a histogram of pulse durations, both on and off durations, I was able to recognize signatures of signals. This approach led to the identification of the following signals:

  • Two Alecto WS4000 or similar weather stations.
  • An Oregon Scientific THN128 433MHz, received at 868MHz band.
  • A Philips outdoor temperature sensor for Philips clock radios, also a 433MHz module

Besides those identified signals, I have several unidentified periodic signals, many with a periodicity of around or exact 30 seconds. I have created some signal catalogue for my own reference, but any help on those signals is appreciated. send me a message on info at sevenwatt com.